The 1.5D sieve algorithm

نویسندگان

  • Clément Fredembach
  • Graham D. Finlayson
چکیده

The sieve is a morphological scale-space operator that filters an input signal by removing intensity extrema at a specific scale. In images, this processing can be carried out along a path -the 1D sieveor over a connected graph -the 2D sieve. The 2D version of the sieve generally performs better; it is however much more complex to implement. In this paper we present the 1.5D sieve, a Hamiltonian path-based version of the sieve algorithm that behaves “in between” the 1D or 2D sieve algorithms, depending on the number of paths used. Experiments show that its robustness to the presence of noise and its performance in texture classification are similar to the original 2D sieve formulation, while being much faster and simpler to implement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimizing Slope Change in Imprecise 1.5D terrains

A 1.5D terrain is an x-monotone polyline with n vertices. An imprecise 1.5D terrain is a 1.5D terrain with a y-interval at each vertex, rather than a fixed y-coordinate. A realization of an imprecise terrain is a sequence of n y-coordinates—one for each interval— such that each y-coordinate is within its corresponding interval. For certain applications in terrain analysis, it is important to be...

متن کامل

A faster algorithm to compute the visibility map of a 1.5D terrain

Given a 1.5D terrain, i.e., an x-monotone polygonal line in R with n vertices, and 1 ≤ m ≤ n viewpoints placed on some of the terrain vertices, we study the problem of computing the parts of the terrain that are visible from at least one of the viewpoints. We present an algorithm that runs in O(n+m logm) time. This improves over a previous algorithm recently proposed.

متن کامل

A Constant-Factor Approximation Algorithm for Optimal 1.5D Terrain Guarding

We present the first constant-factor approximation algorithm for a non-trivial instance of the optimal guarding (coverage) problem in polygons. In particular, we give an O(1)-approximation algorithm for placing the fewest point guards on a 1.5D terrain, so that every point of the terrain is seen by at least one guard. While polylogarithmic-factor approximations follow from set cover results, ou...

متن کامل

Efficient parallel implementations of approximation algorithms for guarding 1.5D terrains

In the 1.5D terrain guarding problem, an x-monotone polygonal line is defined by k vertices and a G set of terrain points, i.e. guards, and a N set of terrain points which guards are to observe (guard). This involves a weighted version of the guarding problem where guards G have weights. The goal is to determine a minimum weight subset of G to cover all the points in N , including a version whe...

متن کامل

The Sieve Re-Imagined: Integer Factorization Methods

In this paper, I explain the Quadratic Sieve, its Multiple Polynomial variation, the Number Field Sieve, and give some worked examples of the afore-mentioned algorithms. Using my own Maple implementation of the Quadratic Sieve, I explore the effect of altering one of the parameters of the Quadratic Sieve algorithm, with respect to both time and success rate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008